
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 3 - Solution Examples

Exercise 1 (Worst-Case)
Consider a partitioning algorithm that, in the worst case, will partition an array of m elements into two
partitions of size bεmc and d(1− ε)me, where ε is fixed and 0 < ε < 1. Show that a QuickSort algorithm
based on this partitioning has a worst-case complexity of O(n log n) (in terms of comparisons between array
elements). Hint: Solve the recurrence by guessing the solution and finding the involved constants.

Solution:
Using that the partitioning step will require at most n comparisons, we get the following recurrence for the
necessary number C(n) of comparisons:

C(1) = 0
C(n) = C(εn) + C((1− ε)n) + n

We guess C(n) := an log2 n + b as the solution, and search constants a and b such that the recurrence is
satisfied:

n = 1: We have
C(1) = a · 1 · log2 1 + b = 0 ⇔ b = 0,

hence, C(n) = an log2 n.

n > 1: We insert our guess into the recurrence:

an log2 n = C(n) = C(εn) + C((1− ε)n) + n

an log2 n = aεn log2(εn) + a(1− ε)n log2((1− ε)n) + n

an log2 n = aεn (log2 ε + log2 n) + a(1− ε)n (log2(1− ε) + log2 n) + n

an log2 n = aεn log2 ε + aεn log2 n + a(1− ε)n log2(1− ε) + a(1− ε)n log2 n + n

an log2 n = aεn log2 ε + aεn log2 n + an log2(1− ε)− aεn log2(1− ε) + an log2 n− aεn log2 n + n

0 = aεn log2 ε + an log2(1− ε)− aεn log2(1− ε) + n

0 = an (ε log2 ε + (1− ε) log2(1− ε)) + n

a = −1
ε log2 ε + (1− ε) log2(1− ε)

Thus, the recurrence is satisfied if

C(n) = −n log2 n

ε log2 ε + (1− ε) log2(1− ε)

Note that the constant a will be very large for values of ε that are close to either 0 or 1 (since ε log ε→ 0
for ε → 0). Thus, even very bad partitions will not destroy the O(n log n) complexity, provided that the
respective partition sizes are bounded by εn and (1 − ε)n. However, bad partitions will still lead to slow
algorithms due to the large constant factor involved.

1



Exercise 2 (Iterative MergeSort)
The following iterative implementation of the MergeSort algorithm is proposed. The procedure MergeIP
is equivalent to the procedure Merge discussed in the lecture, but can work directly on the array A (i.e.,
merges two adjacent sub-arrays of A).

Algorithm 1: MergeSortIt
Input: A: Array of size n = 2k

Result: Array A sorted
k ← log2(n);
m← 2;
for L = 1 to k do

for i = 0 to (n/m)− 1 do
MergeIP(A[i ·m .. i ·m + (m/2)− 1],

A[i ·m + (m/2) .. i ·m + (m− 1)],
A[i ·m .. i ·m + (m− 1)]);

end
m← 2 ·m;

end

1. Describe shortly and in plain words, how MergeSortIt compares to the recursive MergeSort
implementation discussed in the lecture. For that purpose, draw a diagram that illustrates the sorting
of some array with length 8 for MergeSortIt.

2. Formulate a loop invariant for the L-loop of the algorithm, and prove its correctness.

Solution:
1. In each iteration of the L-loop, two adjacent sub-arrays are merged. The lengths of the merged

sub-arrays (m/2) is doubled from each L-loop iteration to the next. In that way, the same merging
steps as for the recursive implementation of MergeSort are executed. The divide steps are implicitly
performed on the array.

2. We propose the following loop invariant:
At entry of the L-loop, the array A consists of 2n

m sub-arrays of length m
2 , where m = 2L.

Each of the sub-arrays is sorted.
Here’s a sketch of the proof:
Initialisation: On the first entry, for L = 1 and m = 21, the length of the sub-arrays is claimed to be

m
2 = 1 with 2n

2 = n sorted sub-arrays. This is satisfied, since sub-arrays of length 1 are always
sorted.

Maintenance: The i-loop will take n
m pairs of two adjacent sub-arrays and merge them using the

procedure MergeIP. Provided the correctness of MergeIP, this will lead to n
m sub-arrays of

twice the length, which satisfies the loop invariant for the next iteration. Note that m is multiplied
by 2, to retain m = 2L.

Termination: At termination, L = k + 1 and thus m = 2k+1 = 2n. Hence, we have only 2n
2n = 1

sub-array of length 2n
2 = n, which is sorted. This implies the correctness of the sorting algorithm.

2


